skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Heeney, Michelle M"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Summary Replicated trait evolution can provide insights into the mechanisms underlying the evolution of biodiversity. One example of replicated evolution is the awn, an organ elaboration in grass inflorescences.Awns are likely homologous to leaf blades. We hypothesized that awns have evolved repeatedly because a conserved leaf blade developmental program is continuously activated and suppressed over the course of evolution, leading to the repeated emergence and loss of awns. To evaluate predictions arising from our hypothesis, we used ancestral state estimations, comparative genetics, anatomy, and morphology to trace awn evolution.We discovered that awned lemmas that evolved independently share similarities in developmental trajectory. In addition, in two species with independently derived awns and differing awn morphologies (Brachypodium distachyonandAlopecurus myosuroides), we found that orthologs of theYABBYtranscription factor geneDROOPING LEAFare required for awn initiation. Our analyses of awn development inBrachypodium distachyon,Alopecurus myosuroides, andHolcus lanatusalso revealed that differences in the relative expansion of awned lemma compartments can explain diversity in awn morphology at maturity.Our results show that developmental conservation can underlie replicated evolution and can potentiate the evolution of morphological diversity. 
    more » « less